Take your FREE HSW Course here - AIA approved!

This is your go-to source for free AIA-approved continuing education for architects. Plus, almost all our courses are delivered in streaming HD video. Registration is fast and easy, just click on Login/Register above. Then, you can enroll in any of our courses found in any of our programs with a single click. Our courses meet or exceed NCARB's high standards for state board license renewal. AIA member? Your credit will be reported to AIA for you.

Designing Beautiful High-Performance Building Envelopes

The building envelope has a lot of different jobs to do—from insulating the building so that it can be efficiently heated and cooled to providing air and water barriers that keep harmful moisture at bay, as well as providing the aesthetic face of the project. High performance building envelopes do all of those things extremely well. This article explores some of the latest high-performance solutions that can be used to create those high-performance envelopes.

HSW Justification:
A high-performance building envelope is necessary to create a building that is efficient and healthy. This article takes a look at how different components in the building envelope perform—giving architects the information they need to choose high-performance components that will produce a high-performing envelope.

Learning Objective 1:
Compare different types of continuous insulation in terms of the thermal performance they offer and the way they behave when exposed to water and fire.

Learning Objective 2:
Describe how insulated metal panels (IMPs) can be used on the envelope to improve building performance, create efficient and healthy interiors, and enhance design flexibility.

Learning Objective 3:
Explain how PET bottles can be upcycled into insulation creating a new product that contains recycled material and improves thermal performance of the building envelope.

Learning Objective 4:
Describe the ways that architectural metal wall systems enable architects to push the creative boundaries of their designs.

...Read More

Sustainable Resiliency with Garden Roofs

Designing with green roofs affords design professionals opportunities to plan projects with exciting new elements, added value, and significant, tangible benefits, thereby enhancing the built environment with newly-created landscapes. This course examines green roof systems, including the types, benefits, components, and related standards. It also reviews a number of installations that demonstrate these principles.

...Read More

Lighting Overview for Healthcare Facilities

 The class is a high-density orientation to lighting considerations and methods in the healthcare environment. Topics will include application situations, impacted populations, design methods, and a review and critique of examples of successful and less-than-successful healthcare lighting designs.

At the end of this course, participants will:

  1. Identify current trends in the healthcare lighting design and the impact lighting has on its occupants and the environment. 
  2. Identify who is impacted by our lighting design decisions and learn best practices on how to light the spaces they occupy.
  3. Identify specific lighting needs of patient rooms.
  4. Identify emerging lighting methods including design for circadian health.
...Read More

Bird Friendly Glass Solution

Architecture tells us a great deal about society. In fact, glass and glazing are used to blur the lines between inside and out, helping elevate performance and the experiences of people. Yet while humans can use environmental cues to identify glass as a barrier, there is growing realization that birds cannot. The solution is bird-friendly glass that delivers on performance, energy efficiency and the needs of people. This course from Guardian Glass is intended to provide the basis for a better understanding of how to recognize issues affecting the bird population while learning about best practices and design fundamentals for smarter, safer buildings.

...Read More

Strategies for Designing with Integrated Lighting and Acoustic Solutions

This course will review the importance of acoustics in architecture, discuss the fundamental principles of sound management, explore how to design interior spaces to maximize occupants’ comfort, and review emerging tools to solve for both sound and lighting. It will also focus on the standards that govern acoustic requirements for diverse applications.

...Read More

Designing with Pre-Crimped Woven Wire Mesh

Designing with Pre-Crimped Woven Wire Mesh is a streaming video course that explores interior and exterior applications and functions for woven metal mesh products in architectural design. The course examines key functions of these materials, details the manufacturing process, and outlines critical specification considerations to ensure beautiful and long lasting installations.

...Read More

Designing for Wellness

This article explores some of the latest products and solutions improving the air quality, thermal comfort, electric light, and daylight control that can be incorporated into a project. Each improves the wellness of the people in the built environment.

 

Learning Objective 1: Explain how air circulation improves thermal comfort and alertness.

 

Learning Objective 2: Describe the ways that increasing the presence of plants and greenery on a project have been shown to clean the air, reduce urban heat island effect, and positively affect the health and wellbeing of people in the built environment.

 

Learning Objective 3: Summarize how circadian LED lighting technology delivers health benefits—improving overall sleep quality, daytime productivity, and feelings of wellbeing—that modern architectural lighting lacks.

 

Learning Objective 4: Discuss how using an underfloor air distribution system (UFAD) improves indoor air quality.

 

Learning Objective 5: Identify the latest advancements in smart window technology that allows these solutions to control glare and solar heat gains, while maintaining views to the outdoors.

...Read More

Surface Engineered Metals for Resilient Design

Program: Architecture, Design, and Building Science

The purpose of this presentation is to give you a clear understanding of the features and benefits of textured metals and discover how to best specify stainless steel and metal alloys in your projects. The first part of our talk will introduce the ecological and economic properties of textured stainless steel as well as educate you on the composition of metals and alloys. The second portion of this presentation will illustrate the process of texturing metals and their applications, as well as how to specify them. The session will also review projects that use textured metals - with beautiful results.

HSW Justification:
Most of this course is dedicated to explaining the aesthetic, ecological and economic advantages of textured metals. Most often, the metal used in stainless steel, which is very long-lived, valuable and 100 percent recyclable. The case studies focus on many beautiful installations that enhance the lives of occupants and visitors through the art and craftsmanship of the installations.

Learning Objective 1:
Students will understand ecological, economic, health and safety benefits of utilizing metals that can be deep textured.

Learning Objective 2:
Students will explore current applications that employ deep textured metals because of their ecological benefits, enhanced performance, and aesthetic attributes.

Learning Objective 3:
Students will learn compositions of metals that can be deep textured, how each performs under varying environmental constraints, and how to safely and economically specify deep textured metals.

Learning Objective 4:
Students will discover end user benefits of deep texturing metals, including performance enhancement, material usage reduction and longer product lifecycles.

...Read More

Discussing Circadian Lighting and the WELL Building Standard with Marty Brennan

This course will explore the requirements, challenges, and best practices for achieving the Circadian Lighting Design Feature L03 in the WELL Building Standard version 2.0.

HSW Justification:
The purpose of this feature in the WELL Building Standard is to provide building occupants with an appropriate exposure to the type of light that can maintain circadian health and align their circadian rhythm with the day-night cycle. The support of the circadian system has been shown to have tremendous health benefits to the people in the space.

Learning Objective 1:
Explain the relationship between spectral power distribution (SPD) and circadian lighting.

Learning Objective 2:
Summarize the circadian lighting feature requirements in the WELL Building Standard v2.

Learning Objective 3:
Describe a few best practices that can help architects to meet this challenging circadian lighting criteria.

...Read More
Load More

Your session will expire soon. Click below to stay logged in.

Stay Logged In Logout
×